
-777.. -~ --

NSWC/WOL TR 78-63

LITHIUM-BORON ALLOY ANODES FOR
MOLTEN SALT BATTERIES (11)

BY S.DALLEK, D. W. ERNST,
0 B. F. LARRICK

Ott RESEARCH AND TECHNOLOGY DEPARTMENT

15 MAY 1978

Approved for public release; distribution unlimited.

._

CID

AUGC 10 1978

NAVAL SURFACE WEAPONS CENTER
Dahlgrgn, Virginia 22446 a Silver Spring, Maryland 20910

78 08 04 060



ECU ITY CLASSIF ATION OF THIS PAGE (When Date Entered)
READ INSTRUCTIONS

REPORT DOCUMENTATION PAGE BEFORE COMPLETING FORM

POT U" 2. GOVT ACCESSION NO. 3. RECIPIENT'S CATALOG NUMBER

SWC/W811R . - .TYPE 
OF REPORT & PERIOD COVERED

THIUM-_ORON 4LOY ANODES FOR MOLTEN roAT BATARIES [II). " Progress ;ept 1)

S. DallekDW. CONTRACT OR GRANT NUMIERI..)

9. PERFORMINOORGANIZATION NAME ANf ADDRESS 10. PROGRAM ELEMENT, PROJECT, TASK

Naval Surface Weapons 
Center

White Oak
Silver Spring, Maryland 20910 NIF; 01 0; WR33JA(1);

II. CONTROLLING OFFICE NAME AND ADDRESS PORT nATF

I j 15 May 4078 /
V. AIMBEA OF PAGES

31
14. MONITORING AGENCY NAME & ADDRESS(If different from Controlling Office) IS. SECURITY CLASS. (of this report)

UNCLASSIFIED

1Sa. DECLASSIFICATION/DOWNGRAOING
SCHEDULE

16. DISTRIBUTION STATEMENT (of this Report)

Approved for public release, distribution unlimited.

17, DISTRIBUTION STATEMENT (of the abstract entered in Block 20, If different from Report)

"1. SUPPLEMENTARY NOTES

19. KEY WORDS (Continue on reverse aide It necessary and Identify by block number)

Lithium Alloys, Boron Alloys, Anodes, Batteries, Differential Scanning
Calorimetry (DSC)

20N ASTRACT (Continue on reverse side If necessary and Identify by block number)

The lithium-boron alloy system has been studied using differential scanning
calorimetry (DSC), metallography, and X-ray analysis. The "alloy" is a two-
phase material, consisting of a high-melting crystalline compound with a
stoichiometry of Li7B6 into which has been wicked excess elemental lithium.
The excess lithium, while being held immobile by the solid Li7B6 matrix, is
available for anodic discharge in molten salt batteries.

*R

oD IN, 1473 EDITION OF I NOV 65 IS OBSOLETE UNCLASSIFIED
S/N 0102-LF-014-6601

SECURITY CLASSIFICATION Of THIS PAGE (When, Date Entefed)



NSWC/WOL TR 78-63

SUMMARY

The lithium-boron system has been studied by differential scanning
calorimetry (DSC), metallography, and X-ray diffraction. The "alloy" was found
to consist of a high-melting, sintered, porous, crystalline compound with a
stoichiometry of Li7B6, into which has been wicked excess elemental lithium.
This material exhibits both the high-energy electrochemical properties of lithium
and stability in the presence of molten salts. This report describes progress
toward the development of lithium-boron anode material for improved molten
salt batteries.

The work leading to this report was supported principally by funds for
the Navy Exploratory Development of Molten Salt Battery Technology under Work
Unit NIF R33JA(1), with partial support under Independent Research Work Unit
6115 ZN/ZRO13OI/ROIIZ.
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INTRODUCTION

Voltaic cells with calcium metal anodes discharging in molten lithium
chloride - potassium chloride eutectic electrolyte are employed in thermally
activated primary batteries. Such batteries have specialized uses for high-
power, short-term discharges in a wide range of military and aerospace
applications (1). They typically yield less than 30 percent of theoretical
capacity because the calcium anode exhibits severe ohmic polarization at current
densities above 0.6 kA/m 2. Insoluble reaction products form a solid passi-
rating barrier between the anode and the molten salt electrolyte (2) that

limits the anode reaction.

The electrochemical superiority of lithium as an anode material is well-
known. Its reaction product, lithium chloride, is soluble in molten salt
electrolyte. Liquid lithium anodes exhibit very little polarization even at
current densities up to 400 kA/m 2 (3). Practical thermally activated primary
batteries with lithium anodes are capable of discharge at current densities
up to 30 kA/m 2 . They employ massive and bulky porous metal or wire screen
substrates as carriers for the liquid lithium (4,9,b). These anodes are subject
to leakage, short-circuiting, and corrosion of cell components. The active
lithium content is typically less than one-fourth of the anode assembly mass.

Studies of rechargeable solid anodes of lithium alloyed with aluminum (7,8)
or with silicon (9,10) have led to their use in rechargeable molten salt cells
operating at current densities less than I kA/m2 . Compound formation in these
alloys lowers the anode potential significantly below that of lithium. Less
than one-fourth of the alloy mass is electrochemi'ally active.

Because boron is similar to aluminum in atomic structure but has only 38
percent of its atomic mass, alloys of lithium and boron are of interest as anode
materials. Early attempts to prepare lithium-boron compounds resulted in sub-
stances of high boron content generally believed to be borides (l1 - 15).
Data on the preparation and physical properties of lithium-rich alloys (16-19)
suggested the existence in the alloys of a high-melting crystalline compound
with stoichiometry near 1:1. Lithium-rich alloys discharged anodically up to
molten lithium chloride-potassium chloride eutectic at current densities up to
80 kA/m2 showed only slight polarization (20). A discharge residue corresponding
to the stoichiometry Li2B was inferred from capacity measurements.

The current work was undertaken to identify and characterize the stable
compounds formed in lithium-rich lithium-boron alloys, to determine the conditions
under which they form, and to provide a basis for estimating the theoretical
anodic discharge capacity.
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The primary experimental method employed to study the alloys was Differential
Scaning Calorimetry (DSC). This thermal analysis technique, in effect, simulates
the preparation procedure (controlled heating) of the alloy while measuring
enthalpic effects of chemical or physical changes in the sample. In addition
to DSC, X-ray and chemical analysis and metallography were used as tools in

characterizing the material.

5



NSWC/WOL 78-63

EXPERIMENTAL

A. Preparation of Lithium-Boron Alloys

Lithium-boron alloy ingots were prepared in a helium atmosphere glove box
with total impurities (02, N2, H2 0, and C02 ) maintained below 10 ppm.
Lithium (Foote Mineral Co., 99.9%, ingot or ribbon) was scraped clean of impurities.
Crystalline boron (Atomergic Chemetals Corp., 99.9%, lump) was ground in a mortar
until it passed through a 40 mesh screen and was retained by an 80 mesh screen.
The lithium and boron were then weighed into a stainless steel crucible having
a detachable bottom to facilitate the removal of the finished ingot. The crucible
and contents were heated with stirring with a stainless steel spatula in a furnace
at about 723 K (4500 C) until the boron was completely reacted. Coinciding with
the reaction of the boron with lithium, a solid phase formed at the bottom of the
crucible. This material was a finely-divided solid that became dispersed through-
out the melt during stirring. Metallographically, the substance was similar in
appearance to powered boron, but, unlike boron, it was quite malleable. When
the formation of this product was complete, as judged by the absence of any further
formation of solid material in the melt, the temperature was slowly raised. At
about 803 K (5300 C), another solid groduct began to form at the bottom of the
crucible, until, at about 853 K (580 C), this solid product occupied most of
the crucible; the remainder of the material was molten lithium. Between 853 K
(5800 C) and about 873 K (6000 C), the particles of the solid product coalesced
suddenly, imparting rigidity to the entire product mixture. The excess lithium
was then apparently wicked into the solid lithium-boron compound matrix, and the
alloy contracted away from the container walls. The ingot was then removed from
the crucible and allowed to cool.

B. Differential Scanning Calorimetry (DSC)

Differential Scanning Calorimetry (DSC) was employed to measure changes
in enthalphy during controlled heating of known mixtures of elemental lithium
and boron. DSC measurements were obtained between room temperature and 953
K (6800 C) at a programmed rate, usually 100 C/min. (0.167 K/s), using a
calibrated DuPont Model 990 DSC apparatus in which a flowing atmosphere of dry
argon was maintained. The DSC samples of about 10 mg mass were prepared by
thoroughly kneading weighed portions of lithium (99.9%, Foote Mineral Co.) and
powdered crystalline boron (99.9%, Atomergic Chemetals Co.) together and then
hermetically sealing the mixture in a specially-designed Armco iron sample cup.
Some samples were weighed portions of previously-prepared alloy ingots.

6
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A preliminary DSC experiment using a sample mixture of 5 mg of Li and 5
mg of B yielded the curve shown in Figure 1. Three major thermal transitions
were observed: (a) An endotherm at 454 K (1810 C), (b) a first exotherm at

603 K (3300 C) and (c) a second larger exotherm at 803 K (5300 C).

These three thermal transitions corresponded to the changes observed in
the reaction mixture during the preparation of the alloy in the glove box,
i.e., the fusion of lithium and the formation of the two solid products.

Based on these results, a multi-step DSC procedure was devised (Figure 2).
The sample was alternately heated and then cooled to room temperature, progres-
sing to higher temperatures with each re-heating. Each heating was terminated
just after the completion of an observed transition. The procedure thus consisted
of four heatings at a constant rate, followed by cooling to room temperature.

The approximate temperature ranges were:

Run Temperature Range Thermal Transitions Observed
l 298 - 493 K (25 - 2200 C) (a) only

2 298 - 725 K (25 - 4500 C) (a) and (b)

3 298 - 953 K (25 - 6800 C) (a) and (c)

4 298 - 953 K (25 - 6800 C) (a) only

C. Metallography and X-ray Analysis

Samples for X-ray and metallographic examination were prepared from alloy
ingots and also from the samples which had been heated beyond the second exothermic
transition in the DSC. These metallographic samples were mounted in epoxy,
polished with silicon carbide paper, etched with methanol or ethylene glycol,
and then coated with mineral oil to protect the sample from reaction with the
atmosphere. X-ray patterns were obtained for these same samples with a Norelco
diffractometer using Cu Ka radiation. The diffractometer shield was packed
with Drierite desiccant and covered with a tightly-fitted Saran Wrap cover to
protect the sample from reaction with atmospheric water vapor.

7
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RESULTS AND DISCUSSION

Approximately 35 DSC experiments were performed employing samples
containing between 40 and 90 atomic percent total lithium mixed with boron. Figure
(2) is a composite showing four curves typical of those obtained in a single
experiment. The endothermic transition occurred in runs 1, 2, and 3 for all
samples at 454 + I K (181 + 10 C); it also always occured in run 4 for samples
richer in lithium than 53 atomic percent. The two exothermic transitions, one
in run 2 and the other in run 3, occurred for all samples. No exothermic trans-
ition occured in run 4. Curves identical to run 4 were obtained when this run
was repeated.

For a given sample, the measured enthalpies of the endothermic transitions
for runs I and 2 were always the same. The endothermic enthalpies were smaller
in run 3 and still smaller in run 4. With an initial mixturc, of 53 atomic
percent lithium or less, the endothermic enthalpy in run 4 was zero (Figure 3).
The endothermic transition always occurred in all runs at the melting point
of pure lithium. There was no evidence of freezing point depression or elevation.

A chemical reaction between liquid lithium and crystalline boron may be
described by:

(n + m) Li(liq) + B(c)------o- Li nB(c) + m Li(liq) []

The method employed for determining the value of n in reaction (1) was based on
the DSC measurements of the heat of fusion of the amount of unreacted lithium
present in the sample. The difference between two such measurements, one made
before the reaction and the other after, provides a direct measure of the lithium
content of the product. The success of this method is based, in part, on the
complete reaction of the boron and on the negligible solubility of any products
in molten lithium.

A reaction was judged to be complete when the exothermic transition associated
with it was absent in a subsequent run and when the calculated value of n remained
constant. Since there was no detectable freezing point depression or elevation
in the melting point of lithium, the endotherm could be assigned solely to the
fusion of pure lithium (AHfus ' 432.3 + 2.3 kJ/kg) (21).

10



NSWCIWOL TR 78-63

Ge
%-

+

A

UL

urn

a U U



NSWC/WOL TR 78-63

Several experiments were performed at very slow heating rates, 10 or 20 C/min
(0.0167 or 0.0334 K/s), to see what effect this would have on the calculated
n values. The n value was strongly dependent on the heating rate for the product
of the first exotherm. However, the value of n calculated for the product of
the second exotherm was totally independent of heating rate and independent
of the apparent stoichiometry of the product of the first exotherm. It was
realized that the first reaction was not going to completion as shown by

a Li(liq) + B(c) -. b Lin8(c) + (1-b) B(c) + (a - nb) Li(liq) [2]

wherein the amount of excess lithium, a-nb, measured by the DSC, varied, depending
on the extent of reaction in a particular run.

Thus, although it was postulated that a single lithium-boron compound,
LinB(c), was being formed during the first exothermic transition, the amount
of unreacted lithium varied in each run, because varying amounts of boron ap-
parently remained unreacted in the mixture. The difficulty in achieving complete
reaction of the boron is probably a direct consequence of the inability to stir
the reaction mixture during a DSC run. It is not at all surprising that this
problem was encountered in a heterogeneous reaction mixture. Nevertheless,
the results obtained for the final product, whether it was prepared in the
DSC or as an ingot, were identical.

In order to resolve the problem of a varying n value for the first product,
a series of isothermal experiments was performed on several lithium-boron mixtures
contained in DSC sample cups. The results are presented in Figure 4. The
procedure involved holding the reaction mixture isothermally for a certain period
of time, usually 20 - 30 minutes, and then cooling below the melting point of
lithium And determining the amount of unreacted lithium in the mixture by DSC
from the endothermic enthalpy. In this manner, the stoichiometries of the
products of the two exothermic reactions were determined to be Li B and
Li 166B, respectively.

The primary focus of our investigation was on the second exothermic reaction,
during which the product of interest as battery anode material is formed. The
results for this reaction on mixtures of elemental lithium and boron and on
samples of the previously-prepared ingots are presented in Figure 5. The atomic
percent of lithium .emaining after the second exotherm goes to zero when the
initial amount of lithium in the mixture is about 53.8 a/o. A statistical analysis
of the 31 data points for which a measureable quantity of unreacted lithium
remained yields the following results for Lin B:

n s a/o Li

1.166 0.051 53.83

12
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This result is extremely close to a value of n - 1.167 (a/o Li - 53.85) calculated
for the stoichiometry Li7 B6. These results indicate that the lithium-boron
"alloy" apparently is a two-phase material consisting of the metallide, Li7B6,
and excess lithium. (The term "metallide" was first proposed by Kurnakov (22)
to describe certain metal-metal or metal-metalloid compounds).

The enthalpies of formation of the two products were determined from the
areas under the exothermic peaks. Because the reaction to form the product
of the first exothermic transition did not consistently go to completion in
the DSC experiments, the measured enthalpies could be interpreted only semi-
quantitatively. The enthalpies measured for the first exothermic transition were
in the range 18 + 4 kJ per gram atomic mass of boron. The enthalpies measured
for the second exothermic transition were in the range 28 + 4 kJ per gram atomic
mass of boron. Thus, it is estimated that for the reaction

0.333 Li(liq) + B(c)--- Li 0.333B(c)

the heat of reaction in the range 3200 C - 4500 C is approximately AH - -18 k,

and for the reaction

0.833 Li(liq) + Li 0.333B(c) - Li .166B(c)

the heat of reaction in the range 5200 C - 650 0C is approximately AH = -28 k.

The results of the X-ray and metallography studies were consistent with
the DSC results. Only onesingle, consistent X-ray pattern was obtained over
the entire range of compositions from approximately 55 to 90 a/o lithium. The
pattern was that of a two-phase material, a lithium-boron phase plus lithium.
h unique pattern was obtained for a 53 a/o lithium sample; it was identical
to the other patterns but contained no peaks attributable to elemental lithium
(see Table 1). Metallographic examination of the alloys also revealed a two-
phase material. One phase, the lithium-boron compound, Li7Bb, was present
throughout the range of compositions studied; the amount of the other phase,
elemental lithium, was consistent with reaction (lJ with n = 1.166 and 05m<8,
the highest value studied. However, below about 66 a/o Li, the free elemental
lithium could not be detected metallographically; it is postulated that the
lithium is in micro-pores and cannot be seen below this composition. The presence
of free elemental lithium found by DSC in mixttures between 53.8 a/o Li (m = 0)
and 66 a/o Li (m - 0.83) was confirmed qualitatively by X-ray diffraction.

A photomicrograph of an 80 a/o Li (B) sample (m = 2.83) is presented in
Figure 6. The Li7B6 phase is seen as the dark area, while the light material
is elemental lithium.

15
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Table 1.

X-RAY DIFFRACTION RESULTS FOR Li 7B

2e d I/I
0

25.70 3.466 100

40.80 2.212 23

45.10 2.010 66

52.60 1.740 <

62.25 1.491 <

79.90 1.201 <5

82.75 1.166 <5

99.55 1.010<5
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FIGURE 6. 80 ATOMIC PERCENT Li (B) ALLOY 0150X)
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Alloy samples were also analyzed for free lithium by Kilroy and Angres (23).
The excess lithium in the sample was extracted with an excess of naphthalene
dissolved in tetrahydrofuran to form a lithium naphthalide solution. The solution
was separated from the ingot residue, reacted with water, and the resulting
lithium hydroxide solution was titrated with standard hydrochloric acid. This
analysis technique was performed over the same range of compositions as in the
DSC studies. The stoichiometry of the residue compound calculated from the
analysis results was Lil15+05B which is in very good agreement with the
DSC results, and was indepe dent of the initial alloy composition from 55 to
90 a/o lithium.

Based on the anodic discharge behavior of lithium-boron alloys in the
LiCl-KCI eutectic melt, DeVries et al. (24) have determined the anode composition
at the end of the discharge to be Li1 .16B, or Li7B6 . They also found evidence
of a compound in the alloy with the apparent stoichiometry Li2B. However, we
have found no evidence for the existence of this compound.

A summary of the results obtained from Differential Scanning Calorimetry,
Metallography, and X-ray analysis, and the results of the extraction analysis
(23) and the electrochemical discharge data (20, 24) are presented in Table 11.

18
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Table II.

SUBSTANCES FOUND IN LITHIUM-RICH Li-B ALLOYS

AFTER SECOND EXOTHERMIC TRAN4SITION

Method Total Atomic Fraction Lithium In Alloy

.53 to .66 .67 to .90

Metal lographic
Examination LiBOnly Li B and Lithium

X-Ray
Diffraction Li 7B 6and Lithium Li 7B 6and Lithium

Differential Li 7B 6and Lithium Li 7 B6 and Lithium
Scanning
Calorimetry n - 1.166 + .051 n - 1.166 + .051

Extract ion Li 7B 6and Lithium Li 7B 6and Lithium
Analysis766

n - 1.15 + .05 n - 1.15 + .05

Electrochemical Li 7B 6and Lithium Li 2B and Lithium
Discharge 7

n - 1.16 + .03 n - 2.00 + .04

19
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CONCLUSIONS

When elemental lithium and elemental boron are mixed together and heated
(in the absence of any other reactive substances), two successive irreversible
exothermic chemical reactions occur forming solid compounds of lithium and boron
that are apparently quite insoluble in molten lithium. The apparent stoichio-
metries of the products that have been identified are represented by the following
reactions:

a. At temperatures between about 573 K (3000 C) and 723 K (4500 C), the
predominant reaction is

0.333 Li(liq) + B(c) - Li .333B(c)

b. At temperatures between about 753 K (4800 C) and 923 K (6500 C), the
predominant reaction is

0.833 Li(liq) + Li0 .3 33 B(c) ---... Li1 .16 6B(c)

The lithium-boron alloy system consists of this Li1 .166B phase (Li7Bb),
which is a high-melting, sintered, crystalline compound, into which has been
wicked excess elemental lithium. The excess lithium, which is the anodically
active substance, is immobilized by the solid Li7Bb matrix during electrochemical
discharge.

20
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